\begin{thm} Quisque aliquam $x$ ipsum sed turpis. Pellentesque $y\in K$ laoreet velit nec justo. Nam sed augue. Maecenas rutrum quam eu dolor. $$\int_5^6 x^2\,dx=A_{xt} \label{eq:first}$$ Fusce consectetuer. Proin tellus est, luctus vitae, molestie a, mattis et, mauris. $$\begin{split} H_c&=\frac{1}{2n} \sum^n_{l=0}(-1)^{l}(n-{l})^{p-2} \sum_{l _1+\dots+ l _p=l}\prod^p_{i=1} \binom{n_i}{l _i}\\ &\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\cdot \Bigl[(n-l )^2-\sum^p_{j=1}(n_i-l _i)^2\Bigr]. \end{split}$$ Donec tempor. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. \end{thm} \begin{proof} Fusce adipiscing justo nec ante. Nullam in enim equation~\ref{eq:first}. \begin{equation*} \left.\begin{aligned} B'&=-\partial\times E,\\ E'&=\partial\times B - 4\pi j \end{aligned} \right\} \qquad \text{Maxwell's equations} \end{equation*} Pellentesque felis orci, sagittis ac, malesuada et, facilisis in, ligula. Nunc non magna sit amet mi aliquam dictum. $$\frac{1}{k}\log_2 c(f)\quad\tfrac{1}{k}\log_2 c(f)\quad \sqrt{\frac{1}{k}\log_2 c(f)}\quad\sqrt{\dfrac{1}{k}\log_2 c(f)}$$ In mi. \end{proof} \lipsum[26] \begin{defn} Aenean adipiscing auctor est. Morbi quam arcu, malesuada sed, volutpat et, elementum sit amet, libero. Duis accumsan. Curabitur urna. $$\begin{pmatrix} a&b&c&d\\ e&\hdotsfor{3} \end{pmatrix}$$ In sed ipsum. \end{defn} \begin{lem} Donec lobortis nibh. Duis $x\in K_2$ mattis. Sed cursus lectus quis odio. Phasellus arcu. Praesent imperdiet dui in sapien. \end{lem} \begin{proof} Vestibulum tellus pede, auctor a, pellentesque sit amet, vulputate sed, purus. \begin{align} A_1&=N_0(\lambda;\Omega')-\phi(\lambda;\Omega'),\\ A_2&=\phi(\lambda;\Omega')-\phi(\lambda;\Omega),\\ \intertext{and} A_3&=\mathcal{N}(\lambda;\omega). \end{align} Nunc pulvinar, dui at eleifend adipiscing, tellus nulla placerat massa, sed condimentum nulla tellus sed ligula. Nulla vitae odio sit amet leo imperdiet blandit. In vel massa. \begin{equation*} \sum_{\begin{subarray}{l} i\in\Lambda\\ 0